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Overview

 Introduction: 

 Periodicity and crystals

 Nonlinearity and Nonlinear Acoustics

 Lattices

 FPU lattice. Long wavelength limit

 Superlattices or 1D crystals

 Dispersion relation

 Harmonic nonlinear effects

 Solitons in superlattices

 2D Sonic crystals

 Self-collimation



Acoustic waves in Crystals



Linear vs nonlinear



Signatures of nonlinearity



Nonlinear acoustics

Plane waves in homogeneous medium

Nonlinear and nondispersive



Equations of Nonlinear acoustics

Intense sound waves are accurately described (neglecting dissipation) 

by the continuity-momentum-state equation system

A quadratic expansion of the state equation leads to

B/A is known as the coefficient of nonlinearity of fluids



Equations of Nonlinear acoustics

For 1D plane waves propagating in an ideal gas

For small displacements

For fluids

For solids (along particular directions)



Equations of Nonlinear acoustics - solids

Wave motion in solids is governed by the momentum equation

For a purely longitudinal mode



Lattices

m
d2un(t)

dt2
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V '(r) = r 3/2

V '(r) = e-r -1

V '(r) = r -2

V '(r) = kr +br 2

The general form (for nearest neighbors coupling)

Many possible interaction potentials

Hertz

Coulomb

Toda

Most of then approximate to FPU
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FPU Lattices

The nonlinear acoustics wave equation!

Consider the lattice with quadratic nonlinearity

At long wavelengths, the continuum limit applies

The evolution equation reads



Superlattices (1D crystals)

a b

1c
2c



Dispersion and band structure

The dispersion relation (band structure) is analytical



One frequency, two modes

First harmonic

Second harmonic



Nonlinear propagation effects in 

superlattices

 Asynchronous harmonic generation. Beatings

 Amplitude dependence. Nonlinear dispersion

 Wave propagation in the bandgap

 DC oscillation mode

 Subharmonic generation

 Modulated nonlinearity. Effective cubic nonlinearity

 Solitons

Numerical study by solving constitutive equations for (p, ρ, v) using FDTD method



Harmonic generation – in band case

Low frequency. Weakly dispersive case

0, ek l  



Harmonic generation – in band case
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Moderate frequency. Dispersive case

Beatings with a period equal to the coherence length



Harmonic generation - in band case



Harmonic generation - nonlinear dispersion

0 10 MPap  0 50 MPap  0 100 MPap 

 The beating period depends on the amplitude

 Signature of nonlinear dispersion



Harmonic generation – nonlinear dispersion
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Harmonic generation – nonlinear dispersion

1 0( , )P p z
2 0( , )P p z

• Dispersion is amplitude dependent

• Computing Δk we can obtain nonlinear variations of dispersion relations

• The full picture



Wave propagation in the

bandgap – 2nd harmonic

• 2nd and 3rd harmonics in Band Gap:

• Forced component of 2nd harmonic 

propagates with finite amplitude

10 MPa 100 MPa



Wave propagation in the

bandgap – 1st harmonic
• 1st harmonic in Band Gap

• Phase matched k(2w)=2k(w)

• Evanescent propagation, but…

• At higher amplitudes 2nd can regenerate 1st
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3rd Harmonic generation

• 2nd harmonic in Band Gap

• 3rd harmonic phase matched

• The medium behaves as a cubic-like 

nonlinear material



DC oscillation mode
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• 2nd harmonic in Band Gap

• 3rd harmonic forced with 3k=0

3k()=3k()-kB=0



Modulated nonlinearity

• Alternate sign of  nonlinearity a b1 2c c

1
2

2 1  

1

1



Modulated nonlinearity- Distorsion

compensation
• Nonlinear effects are compensated for x ~ σ

• Long wavelength l =10d,  d = a+b

• An extraordinarily linear medium! 



Effective cubic nonlinearity

• for            cubic nonlinear effects appear1 



Solitons



Solitons

Linear and dispersive

Nonlinear and non-dispersive

Nonlinear and dispersive

Acoustic pulse propagation under different conditions



Solitons in an acoustic superlattice

KdV type equation:
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Progressive nonlinear waves + dispersion



Solitons – analytical solution

Soliton solution for KdV
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Solitons – amplitude effects

0 2 MPap 

0 10 MPap 

0 50 MPap 
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Solitons –

width effects
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2D nonlinear sonic crystals

 Scatterers are considered as rigid

 Nonlinearity only in the host medium (fluid)



Self-collimation - review

Numerical simulation Experimental results

kx, ky

kz

Self-collimation:

- Propagation of PWs is

perpendicular to the IFC

- A flat IFC results in an

effective zero diffraction

V. Espinosa et al, PRB 76, 140302R 2007



2D nonlinear sonic crystals

Isofrequency curves and band structure of the crystal:

r = 1mm, a = 5.25mm, host medium: water. 

Dispersion curves at self-collimation condition

Second band Eigth band



Phase matching of second harmonics

k()

k(2)2k()



2D nonlinear sonic crystals

r = 0.6mm, a = 5.25mm, frequency (Fundamental) = 225 kHz, P0 = 1.5MPa, 

circular scatterers, Transducer diameter Ra = 35mm 



2D nonlinear sonic crystals

r = 0.6mm, a = 5.25mm, frequency (Fundamental) = 225 kHz, P0 = 1.5MPa, 

circular scatterers, Transducer diameter Ra = 35mm 



2D nonlinear sonic crystals

r = 1 mm, a = 5.25 mm, frequency (Fundamental harmonic) = 225 kHz, P0 = 

1.5MPa, circular scatterers, Transducer diameter Ra = yy/3 = 35mm 



2D nonlinear sonic crystals – point source

r=0.6 mm

1st harmonic 2nd harmonic

Linear
2nd harmonic

Nonlinear, weak
2nd harmonic

Nonlinear, strong

Point source at the center of the crystal



2D nonlinear sonic crystals

r=1mm

r=0.6mm

 Increasing filling factor modifies propagation directions (dispersion relations

change)

 Since dispersion relations change with nonlinearity, it is possible to select

the directions by varying the amplitude (nonlinear spatial filter)



2D nonlinear sonic crystals - experiments

10 cm



3D nonlinear sonic crystals - experiments



Conclusion

The interplay between nonlinearity and periodicity offers

new and interesting possibilities to control wave 

propagation in structures materials

1D systems allow for analytical predictions based on

very simple models

Experiments must be done to confirm the predictions


